43 research outputs found

    Real-Time Detection System of Driver Distraction Using Machine Learning

    Get PDF

    Batch Reinforcement Learning for Optimizing Longitudinal Driving Assistance Strategies

    No full text
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.International audiencePartially Autonomous Driver's Assistance Systems (PADAS) are systems aiming at providing a safer driving experience to people. Especially, one application of such systems is to assist the drivers in reacting optimally so as to prevent collisions with a leading vehicle. Several means can be used by a PADAS to reach this goal. For instance, warning signals can be sent to the driver or the PADAS can actually modify the speed of the car by braking automatically. An optimal combination of different warning signals together with assistive braking is expected to reduce the probability of collision. How to associate the right combination of PADAS actions to a given situation so as to achieve this aim remains an open problem. In this paper, the use of a statistical machine learning method, namely the reinforcement learning paradigm, is proposed to automatically derive an optimal PADAS action selection strategy from a database of driving experiments. Experimental results conducted on actual car simulators with human drivers show that this method achieves a significant reduction of the risk of collision

    Object Perception for Intelligent Vehicle Applications: A Multi-Sensor Fusion Approach

    Get PDF
    International audienceThe paper addresses the problem of object perception for intelligent vehicle applications with main tasks of detection, tracking and classification of obstacles where multiple sensors (i.e.: lidar, camera and radar) are used. New algorithms for raw sensor data processing and sensor data fusion are introduced making the most information from all sensors in order to provide a more reliable and accurate information about objects in the vehicle environment. The proposed object perception module is implemented and tested on a demonstrator car in real-life traffics and evaluation results are presented

    Fusion Framework for Moving-Object Classification

    No full text
    International audiencePerceiving the environment is a fundamental task for Advance Driver Assistant Systems. While simultaneous localization and mapping represents the static part of the environment, detection and tracking of moving objects aims at identifying the dynamic part. Knowing the class of the moving objects surrounding the vehicle is a very useful information to correctly reason, decide and act according to each class of object, e.g. car, truck, pedestrian, bike, etc. Active and passive sensors provide useful information to classify certain kind of objects, but perform poorly for others. In this paper we present a generic fusion framework based on Dempster-Shafer theory to represent and combine evidence from several sources. We apply the proposed method to the problem of moving object classification. The method combines information from several lists of moving objects provided by different sensor-based object detectors. The fusion approach includes uncertainty from the reliability of the sensors and their precision to classify specific types of objects. The proposed approach takes into account the instantaneous information at current time and combines it with fused information from previous times. Several experiments were conducted in highway and urban scenarios using a vehicle demonstrator from the interactIVe European project. The obtained results show improvements in the combined classification compared with individual class hypothesis from the individual detector modules

    From the Concept of Being “the Boss” to the Idea of Being “a Team”: The Adaptive Co-Pilot as the Enabler for a New Cooperative Framework

    Get PDF
    The “classical” SAE LoA for automated driving can present several drawbacks, and the SAE-L2 and SAE-L3, in particular, can lead to the so-called “irony of automation”, where the driver is substituted by the artificial system, but is still regarded as a “supervisor” or as a “fallback mechanism”. To overcome this problem, while taking advantage of the latest technology, we regard both human and machine as members of a unique team that share the driving task. Depending on the available resources (in terms of driver’s status, system state, and environment conditions) and considering that they are very dynamic, an adaptive assignment of authority for each member of the team is needed. This is achieved by designing a technology enabler, constituted by the intelligent and adaptive co-pilot. It comprises (1) a lateral shared controller based on NMPC, which applies the authority, (2) an arbitration module based on FIS, which calculates the authority, and (3) a visual HMI, as an enabler of trust in automation decisions and actions. The benefits of such a system are shown in this paper through a comparison of the shared control driving mode, with manual driving (as a baseline) and lane-keeping and lane-centering (as two commercial ADAS). Tests are performed in a use case where support for a distracted driver is given. Quantitative and qualitative results confirm the hypothesis that shared control offers the best balance between performance, safety, and comfort during the driving task.This research was supported by the ECSEL Joint-Undertaking,which funded the PRYSTINE project under the Grant 783190

    Artificial co-drivers as a universal enabling technology for future intelligent vehicles and transportation systems

    Get PDF
    This position paper introduces the concept of artificial “co-drivers” as an enabling technology for future intelligent transportation systems. In Sections I and II, the design principles of co-drivers are introduced and framed within general human–robot interactions. Several contributing theories and technologies are reviewed, specifically those relating to relevant cognitive architectures, human-like sensory-motor strategies, and the emulation theory of cognition. In Sections III and IV, we present the co-driver developed for the EU project interactIVe as an example instantiation of this notion, demonstrating how it conforms to the given guidelines. We also present substantive experimental results and clarify the limitations and performance of the current implementation. In Sections IV and V, we analyze the impact of the co-driver technology. In particular, we identify a range of application fields, showing how it constitutes a universal enabling technology for both smart vehicles and cooperative systems, and naturally sets out a program for future research

    Cognitive Systems in Intelligent Vehicles - A New Frontier for Autonomous Driving

    Get PDF
    This position paper introduces the concept of "artificial co-pilot" (that is, a driver model), with a focus on driver's oriented cognitive cars, in order to illustrate a new approach for future intelligent vehicles, which overcomes the limitations of nowadays models. The core consists in adopting the human cognitive framework for vehicles, following an artificial intelligent approach to take decisions. This paper illustrates in details these concepts, as they are under development in the EU co-funded project HOLIDES

    Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior

    Get PDF
    Abstract—Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, inter- active motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behaviour as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behaviour, from prediction of individual pedestrians’ likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behaviour, high-level psychological and social modelling of pedestrian behaviour still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behaviour, but much work is still needed to translate them into quantitative algorithms for practical AV control

    A Reinforcement Learning Approach to Optimize the longitudinal Behavior of a Partial Autonomous Driving Assistance System

    No full text
    Best Paper AwardInternational audienceThe Partially Autonomous Driving Assistance System (PADAS) is an artificial intelligent co-driver, able to act in critical situations, whose objective is to assist people in driving safely, by providing pertinent and accurate information in real-time about the external situation. Such a system intervenes continuously from warnings to automatic intervention in the whole longitudinal control of the vehicle. This paper illustrates the optimization process of the PADAS, following a statistical machine learning methods - Reinforcement Learning - where the action selection is derived from a set of recorded interactions with human drivers. Experimental results on a driving simulator prove this method achieves a significant reduction in the risk of collision
    corecore